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The Coriolis '-sum rules and the angular momentum commutators have been derived for etha
ne-like molecules. Commutation relations obtained for a completely free internal rotation have 
been compared with those obtained for a small barrier to internal rotation. 

Watson1 , 2 has recently shown that the commutation relations for the operators of the so-called 
vibrational angular momentum, in nonlinear and linear rigid molecules, do not assume the simple 
form of the commutation relations for the operators of the molecule-fixed components of the 
total angular momentum. An extensicn of this treatment to molecules with internal rotation 
is not straightforward because of the presence of additional "internal" angular momenta in these 
molecules, i.e. the internal rotation angular momentum and the torsional vibrational angular 
momentum, and because of the general dependence of the Coriolis ,-constants on the torsional 
variables. 

In the present paper, Coriolis ,-sum rules and commutation relations have been deriv
ed for the angular momentum operators for the ethane-like molecules with low barrier 
to internal rotation. Commutation relations obtained for completely free internal 
rotation have been compared with those obtained for a nonzero barrier to internal 
rotation. 

The Vibrational-Rotational-Torsional Hamiltonian 

An example of a molecule to which the following treatment can be applied is di
methylacetylene (Fig. 1). It is convenient to divide the molecule into a "top half" 
and "frame half": (CH3Ca- Cc ==) + ( ==:Cd-CbCH3) and to introduce four co
ordinate systems: the space-fixed axis system XYZ; the molecule-fixed axis system xyz; 

the "top" axis system xtYtZ; the "frame" axis system XrYrZ (Fig. 1). The orientation 
of the top axis system with respect to the space-fixed axis system is defined by the 
three Euler angles e, cP, Xt, and similarly of the frame axis system by the Euler angles 
e, cP, Xf. Instead of Xt, Xf the variables x and'}' can be defined, 

(la, b) 
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According to the formalism introduced by Hougen 3
, the moving systems of axes 

are defined by the following conditions (Eqs (3) ref. 3) 

In1 i 5 i-
1(0,0, ±Y) .di = ° , (2a) 

i 

In1 i5 i-
1(0,0, ±Y) [r? x d i ] = In1 i [5;-1(0, 0, ±y). r?] x [5 i-

1(0,0, ±y). dJ = 0, (2b) 
i i 

k . [I n1 i r? x dJ = ° . (2c) 
t-f 

In Eqs (2), I represents a sum over all nuclei, I represents a sum over the nuclei 
i t-f 

in the top minus the sum over the nuclei in the frame, k is the unit ... vector along the z 
axis. The vectors r i , 

(3) 

are the position vectors of the i-th "top" nucleus in the "top" axis system, and the 
position vectors of the Hframe" nucleus in the "frame" axis system; r?'s represent the 
reference positions of the nuclei chosen so that all bond lengths and angles, except 
the torsional angle, have their equilibrium values; the d i represent vibrational dis
placements for the equilibrium positions of the "top" and "frame" nuclei in the cor
responding "top" and "frame" axis systems. The matrix 5 i-

1(0, 0, ±y) is defined as 

[

COS y =+= sin y 

± ~n y ° cos y 
(4) 

O~2 
H, \ 

~. _ . _. _' )-Ca __ c-zc ~====oCct-=-_C....:b:n. 

FIG. 1 

The Rotor-Fixed Axes in Dimethylacetylene 
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where the upper sign holds for the nuclei in the top half, the lower sign for the nuclei 
in the frame half of the molecule. The variables describing the motions of the atomic 
nuclei are Ro, the Cartesian coordinates in the space-fixed axis system of the centre 
of mass of the molecule; the Euler angles e, cI>, x; the angle of internal rotation y; 
and the symmetry coordinates of vibration Sk (k = 1,2, . .. , 3N - 7). The symmetry 
coordinates Sk as well as the non-genuine normal coordinates Tx, Ty, Tz corresponding 
to the translation (Eq. (2a)), Rx, Ry, Rz corresponding to the rotation (Eq. (2b), 
and -r corresponding to the torsion (Eq. (2c)) are related by an orthonormal trans
formation to the vibrational displacements dj, 

Sk = }::Z~j.k(Y) [m~/2dtd] k = 1,2, ... , 3N (5) 
a,i i = 1,2, ... ,N 

CI. = x,Y,z 

where Sk is a symmetry coordinate Sk or a non-genuine vibrational coordinate, 
daj is the CI.-th component of the vector d j in the "top" or "frame" system of axes. Some 
of the transformation coefficients l~i.k pertaining to the symmetry coordinates Sk 
are certainly functions of the torsional angle3 y. 

The rotational variables e, cI>, x, and y and the coordinate Ro are related to the 
space-fixed Cartesian coordinates of the nuclei Rj by the equation: 

(6) 

where S( e, cI>, x) is the 3 x 3 transformation matrix given explicitly in Appendix I 
of ref.4. According to Eq. (6), the velocity Rj of the nucleus with respect to the space

fixed axes X YZ is 

where 

Rj = Ro + 5- 1(e, cI>, x). tj + S-l(e, cI>, x). t j , 

tj = S;-1(0, 0, ±y) . (r? + dj), tj = 5j- 1(0, 0, ±y) . (r? + dj) + 
+ Sj-1(0, 0, ±y) . dj . 

(7) 

(8) 

In Eq. (8), the expression for tj was derived under the assumption that the reference 
positions of the atomic nuclei do not depend on the torsional angle y, i.e., (d/dt) r~tj = 
= (d/dt) r~tj = (d/dt) r~ti = 0. 

By use of Eqs (7), (8), and (2), the kinetic energy of vibration, rotation and torsion 

then can be written in the form, 

2T( == :LmjRi . Rj) = :Llallwawp + }Nzz + :Lmidi . dj + 
i a,p i 

+ 2ro. :LmiS;-1(0, 0, ±y). (dj x d i ) + 2y[:Lmi(di x di)z] + 2y :Lwa1az' (9) 
i t-[ a 
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where (Oa. are the components of the angular velocity vector with respect to the mole
cule-fixed axes, 

Ia.a. = Imi(t:i + t;i) , (ct, /3, y = x, y, z), (lOa) 
i 

Ia.~ = - Imita.itlli (ct =!= /3), (lOb) 
I 

ixz = - ImitxJzi' i yz = - ImityJzi' izz = Imi(t;i + t:i) • (11) 
I-f t-f I-f 

The definition of the normal coordinates of vibration which have to be introduced 
into Eq. (9) requires some discussion. Let d be the column matrix of the coordinates 
m~/2da.i (ct = x, y, z; i = 1,2, ... , N), and Q the column matrix of the normal 
coordinates of vibration Qk (including the non-genuine normal coordinates defined 
by Eqs (2)). 

Then 
d = Ley) Q, (12) 

where Ley) is a 3N . 3N orthogonal matrix of the coefficients Za.i,k(y) which are in gene
ral functions of the torsional angle y. 
Therefore 

d = yl/Q + lQ, 

where the elements ofthe matrix l' are Z;i,k = djdy(la.i,k)' 
Hence 

(13) 

Imidi . di = Jd = QQ + y(Qil/Q + Qi/lQ) + Y2Qi/l/Q. (14) 
i 

The matrix il' is an anti symmetric matrix since il = £3N and from the orthogonality 
of the transformation (12), djdy(iL) = L/l + il' = 0, therefore il' = -L'L. 
Hence 

Ql.l/Q = Ia;QkQI , (I5a) 
kl 

where 

(16) 

(~; = -(l~. Qil/Q is refered to as a Coriolis coupling term. Since similarly 

Qi/lQ = I(l~QkQI (15b) 
kl 

then 
QLl/Q + Qi/lQ = 2 2J~;QkQI' (17) 

kl 

Collection Czechoslov. Chern. Commun. IVoL 37/ (1972) 



Commutation Relations for the Angular Momentum Operators 3821 

The last term on the right side of Eq. (14) is 

·yzor'L'Q = ? l)~IQkQl' (18) 
where kl 

(19) 
a,i 

k~l = + k;k' Oi' L'Q is a contribution to the potential energy term. 
Consider now the potential energy V of the molecule as a function of the vibrational 

displacements di and the angle of internal rotation y. Expanding V in terms of d i 

(taken at the reference configuration) gives 

V = Vo(y) + I(8Vj8dai )o dai + 1- I (8 2 vj8dai 8dpj)o daidPj + higher terms. (20) 
a,i a,fi,i,j 

In Eq. (20), Vo(y) depends only on the torsional angle y and therefore represents the 
potential energy of internal rotation of the non-vibrating molecule. The second term 
on the right side of Eq. (20) vanishes since, for the reference configuration which was 
chosen, the pure vibrational energy has a minimum and hence all the linear force 
constants (8Vj8dai )o = O. In general the quadratic force constants Fai,pj = 

= (8 2 Vj8dai 8dpj)o have to be considered as functions 3 of y. The quadratic term can be 
written as 

(21) 

where F~i,Pj is that part of the force constant Fai,pj which is y-independent. 
In the treatment described above, equation (14) was the result of the mere 

requirement that L(y) is an orthogonal matrix with coefficients which are in general 
functions of y. Further requirement which specifies that Eq. (12) is a transformation 
to the normal coordinates of vibration is that the quadratic part of the potential 
energy expansion is diagonal in the Q, i.e. 

3N - 7 

V = Vo(y) + 1- I AkQ~ , (22) 
k=l 

where the Ak are in general functions of y. However, it is possible to define normal 
coordinates of vibration in terms of which only the y-independent part of the quadra
tic term is diagonal in Q, 

(23) 

and to consider the third term on the right side of Eq. (23) as the vibrational contri
bution to the potential energy of internal rotation. In other words, the normal co" 
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ordinates may be obtained through a transformation L(y) (Eq. (12)), where the columns 
of L(y) are the eigenvectors of the vibrational secular equation with force constants 
which are either y-dependent or y-independent. The latter definition may be convenient 
when the barrier to internal rotation is small and the vibrational contribution to the 
barrier of internal rotation may be considered as a small perturbation5

• The following 
treatment will be based on the definition of the normal coordinates obtained from the 
y-dependent force <.onstants and the results will be then compared with the results 
obtained from the y-independent force constants. Using Eqs. (13) and (14), equa
tion (9) can be written as 

3N-7 

2T = L Iapwawp + ?Izz + L Q~ + 2 LwiL'~IQkQl + y Lt]~lQkQl) + 
a,p k=l a kl kl 

(24) 

where the Coriolis coupling coefficients are defined as* 

'~l = LeaPo Ll~i,kni,l 
po i . 

(25a) 

~~l = LeaPo L l~i,klii,l' al = ~~l + a; . (25b, c) 
po t-f 

The l!i,k in Eqs (25) are defined as 

l!i,k = L 5 i-
1(0,0, ±y)aplPi,k . (26) 

Il=x,y,z 

The quantities t]~I' ij~l in Eq. (24) are defined as 

(27,28) 

(29) 

In Eqs (27)-(29) the l!;,k are defined as 

l!;,k = LS:
1
(0, 0, ±Y)aP Ipi ,k . (30) . 

P 

Eq (24) can be rewriten "into the momentum form, 

(31) 

In the following equations the unit antisymmetric tensor eapo is used as exyz = eyzx = 

e7.lY = 1, e xzy = eyxz = ezyx = -1, and eapo = 0 if any pair a, P, 0, are identical. 
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where now ii, p = x, y, z or y. In Eq. (29), Il"(a: = x, y, z) are the molecule-fixed com
ponents of the total angular momentum, 

(32) 

the momentum conjugate to y is 

Ily (== aa~) = IzzY + IalQkQI + 2y D'n,qkQ, + I w)~z + Iw~ II'J~IQkQ, ; 
y kl kl ~= x ,y , z ex kl (33) 

the momentum conjugate to QI is 

(34) 

the so-called vibrational angular momentum (Footnote 1 in ref. l
) 1t~ is defined as 

1t~ = I(~IQkPI ; a: = x, y, Z 
kl 

the so-called vibrational torsional angular momentum Tty is defined as 

(35) 

(36) 

The quantities /liiP in Eq. (31) are complicated functions of the geometry of the mole
cule and of the normal coordinates of vibration; their explicit form can be found 
in ref. 3

• 

Orthogonality Conditions of the Coefficients of the Coordinate Transformation 

The orthogonality of the transformation (12) implies a number of relations among 
the coefficients ["i,k' Since the coefficients l!i,k defined by Eq. (26) appear in the ex
pressions, rather than the coefficients ["i,k (defined by Eqs (12)), relations will be 
given here in terms of the coefficients l!i,k' The orthogonality conditions which follow 
from the sum over the atoms are: 

Il!i,k1!i,1 = Il"I,k1"i,1 = (5kl , (37) 
a,i (X.i 

Lm~/21!i,k = 0, (38) 
i 

(39) 
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(40) 

where t~j (0: = X, y, z) are the molecule-fixed components of the vector tj for di = 0 
(Eq. (8)). The orthogonality conditions which follow from the sum over all the normal 
coordinates are: 

3N-7 

I l~j , kl~j,k = bjjb"p - m~/2m]/2M-lbaP -
k=l 

- I eax<epo<(I?<tl m~/2ml'2t~jt~j + (_1)61] IeaxzeJlozCI~ztl mi/2ml'2t~it~j' (41) 
t,~,o x,o 

where M = Imi, I? is the value of the quantity I .. for all di = 0 (Eqs (10a) and (8)), 
i 

and ()ij = 1 when i and j simultaneously refer either to the top or to the frame nuclei 
and ()ij = 0 otherwise. Note that Eq. (41) holds for an orientatiO'n of the molecule
fixed axes and the axis of the inertia ellipsoid such that the equilibrium products 
of inertia vanish (Eq. (14) in reU where this simplification was not considered de
liberatelY)· 

Interaction Coefficients alld Sum Rules 

We define the coefficients a~1l and a~1l as the derivatives of Iall and l"ll along Qk at the 
reference configuration: 

(42a, b) 

It is then obvious from the definition of laP (Eqs (10)) and of lall (Eqs (11)) that 

a~1l = ae" = 2 I eaXEepOE I m:/2t~il~i,k' 
and ",0,& i 

a~P = ae" = 2 I e"'XEepOE I m:/2t~;lii,k' 
x,o,e t-f 

(43) 

(43b) 

The following sum rules can be then derived for the Coriolis coupling coefficients 
from Eqs (25a), (41), and (43) 

I'~m,rm = bapbkl - Il~i,kl~i,1 -Jr Ia~E(I?Etl a~P- t a~Z(I~ztl af/!. (44) 
m i & 

The derivation of the sum rule I'~mam (0: = X, y, z) requires a preliminary discussion 
m 

of the Coriolis coupling coefficient am defined by Eq. (25e) as the sum of ~fm and 
G~. The Coriolis coupling term a; has been defined in Eq. (16) in terms of the lai,k; 
however it is desirable to express a; in terms of the coefficients l~i ,k' With the use 
ofEqs (16), (26), and (30) one obtains after some algebraic manipulation 
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(45) 
where a,i 

Hence 

(kl = ~~l + ~fk + 2)!i,l(l~i,k)' = l)!i,ll!i,k)' , (46) 
a,l ct.i 

and 
2J~mnm = l1:f - t L a~E(I~E) -1 a~z - ! a~Z(I~z) - 1 afz , (47) 

where m E=X,Y,Z 

(48) 

Eq. (47) has been obtained with the use of Eqs (46), (41), and of the relations a/aye a~~) = 

= a/ay(ae~) and a/ay(a~~) = a/ay(ae~). 

Commutation Relations For the Angular Momentum Operators 

The operators of the components of the total angular momentum with respect to the 
molecule-fixed axis system xyz (Eq. (32)) satisfy the same commutation relations as 
in rigid molecules:* 

(49) 

rr~ (a = x, y, z) commutes with the operator of the torsional angular momentum 
Dy (Eq. (33)) 

(50) 

and with the operators of the components of the vibrational angular momentum 
1t~ (a = x, y, z) (Eq. (35)) and of the vibrational torsional angular momentum 1ty 
(Eq. (36)), 

(51,52) 

because the corresponding operators act on different coordinates. 
Commutators of the "internal" angular momenta are much more complicated 

than the commutators discussed above. Consider first the commutation relations 
for the operators of the components of the vibrational angular momentum (including 
the . vibrational torsional angular momentum). The general definition of these opera

tors is (Eqs (35) and (36)) 

1tiX = 2J~IQkPl' a = x, y, z or y 
kl 

(53) 

These relations are obtained when the operatorslla (0: = X, y, z) are expressed in terms 
of the operators conjugate to the rotational variables e, (p, x Eqs. (6) in Sect. II - 4 of ref.4

). 
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so that the use of the. commutation relations between the Q's and P's gives 

[1tiX' 1tp] = ih L ('~m'~m - '~m'~m) QkPI, ~ = x, y, z or y. (54) 
k,l,m 

The sum rule (44) then gives the following commutation relations for the operators 
of the components of the vibrational angular momenta 1tx , 1ty , 1tz : 

ih ~-~Z(IO )-1 -Z~(Q P Q P ) - - L.Pk zz al k I - I k . 
4 kl 

(55) 

Consider now the commutation relations between 1t~ (c.: = x, y, z) and 1ty • The sum 
rule (47) gives in this case the following commutation relations: 

ih~_~Z(IO)-l ZZ(QP QP) - - L.,a k zz a l k I - I k • 
4 kl 

(56) 

Consider finally the commutators of the torsional angular momentum operator IIy 
with the vibrational angular momentum 1t~ (c.: = x, y, z) and the vibrational torsional 
angular momentum 1ty • The Coriolis coupling terms '~I (c.: = x, y, z) (Eq. (25a)) must 
be considered in general as the functions of the torsional angle 5 ,6 y. Hence from the 
definition of '~I one obtains: 

(57) 

and the commutator of the torsional angular momentum IIy with the vibrational an
gular momentum 1t~ (c.: = x, y, z) then becomes 

where 
(59) 

For the case of the commutator [fly, 1ty], I was not able to find an expresion for the 
derivative 
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(60) 

in terms of the quantities introduced in this paper. Because the Coriolis constant (kl is 
y-independent if the y-independent force constant matrix is introduced (Eq. (23)), 
no further attempt was made to express 8GJ/8y in terms of some newly defined 
quantities (see also Eq. (62)). 

DISCUSSION 

Commutation relations for the "internal" angular momenta, derived in this paper, 
assume a more complicated form than the commutation relations for "rigid" mole
cules. Some of these commutators can be simplified when the y-independent force 
constant matrix is used in the normal coordinate calculation (Eq. (23) and the fol
lowing paragraph). In this case, the Coriolis constants Gl and (~l remain y-dependent 
but the Coriolis constants (~l and Gl become y-independent5

• Then 

(61 , 62) 

An interesting problem is whether it would be possible or not to simplify the vibra
tional-rotational-torsional Hamiltonian using the sum rules and commutation rela
tions derived in this paper, in a way similar to that found by Watson for "rigid" 
molecules! ,2. The form of the sum rules and of the commutation relations found 
in this paper for ethane-like molecules indicates that such simplification might be 
possible. A preliminary analysis however revealed that the amount of algebraic 
work required in such a treatment would be considerable and the problem has not 
yet been studied in detail. 
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